

GAMS and how to use it from MATLAB

	Maintainer

	Johannes Dorfner, <jdorfner@gmail.com>

	Date

	June 28, 2021

	Copyright

	The corresponding code is licensed under the GNU General Public License 3.0 [http://www.gnu.org/licenses/gpl-3.0].
This documentation is licensed under a Creative Commons Attribution 4.0
International [http://creativecommons.org/licenses/by/4.0/] license.

Introduction

This manual consists of two major sections:

The first section is a short GAMS introduction with a motivation for
an external data handling component. The basic language elements sets,
parameters, variables and equations are briefly explained, so that
readers with experience in mathematical modelling should be able to write new
models.

The second section then introduces GAMS.m, a class written for
MATLAB that provides static functions that allow creating GAMS data
structures, reading and writing GDX files. Finally, the concepts
entities and timeseries are introduced and how they can be used for
rapid model development.

Contents

	1. GAMS introduction
	1.1. Example (1) – Fuel station

	1.2. Sets

	1.3. Parameters

	1.4. Variables

	1.5. Equations

	1.6. Auxiliary statements

	1.7. Further reading

	2. GAMS.m
	2.1. Motivation

	2.2. Example (2) – GAMS with MATLAB script

	2.3. Input data – Sets

	2.4. Input data – Parameters

	2.5. GDX data exchange

	2.6. Calling GAMS

	2.7. Example (3) – Interface class replaces script

	2.8. Input data – Entities

	2.9. Input data – Timeseries

	2.10. Data manipulation

	2.11. Further reading

Download

Get GAMS.m and the usage examples from its GitHub repository [https://github.com/ojdo/gams-matlab].

1. GAMS introduction

GAMS, short for General Algebraic Modelling System, is a commercial
optimization software developed and sold by GAMS Development
Corporation. Its speciality is describing and solving large-scale
optimization problems with millions of variables and equations. It
comprises a special purpose model description language based on sets,
parameters, variables and equations. It supports solving linear,
mixed integer, quadratic and nonlinear optimization problems.

Sets and parameters are input data that describe the system to be
optimized. Equations describe the system structure. Variables values of
an optimal solution are model output.

1.1. Example (1) – Fuel station

The following code section is a complete model of a hypothetic fuel
station for electric vehicles that generates its electricity from
renewable sources and has an electric storage. Highlighted are
non-functional inline comments that provide explanations and data
sections.

Sets (input) in this model are electricity generation technologies i
(photovoltaics, wind onshore and offshore) and timesteps t (1…8760).
Each renewable source has a normalised timeseries parameter cf(t,i)
that is defined over the whole year with time resolution of one hour.
Electric cars are modelled as a demand timeseries d(t). For brevity, all
timeseries are generated from random numbers. Both storage and
electricity generation have attached investment costs cs in k€ per MWh
storage capacity and c(i) in k€ per MW generation capacity.

Optimization variables (model output) in this model are the
generation capacities per technology x(i) in MW and the storage size s
in MWh. The variable to be minimized is z, the total cost for satisfying
the demand d(t) in each timestep over the whole year. Variable st(t)
simulates the storage filling level in each timestep. All energy
quantities are limited to positive values by a single positive
statement.

The main equation cost sets the value for variable z. It is the cost
function, whose value z is to be minimized. Equation pp(t) calculates
the value for helper variable tp(t), the total energy production per
timestep. Equation dd(t) assures demand satisfaction either from
production or storage and is the main optimization constraint in this
model. Equation storage(t) calculates the filling levels for each
timestep. Variable sell(t) enables the model to throw away excess
energy. Equation ss(t) limits filling level to the storage capacity. The
final equations ss0(tfirst) and ssN(tlast) set boundary conditions for
the storage filling level.

$title Electric fuel station model (fuelstation.gms)

Sets
 t time / 1*8760 /
 i type of production / pv, windon, windoff /
 tfirst(t) first timestep
 tlast(t) last timestep;

 tfirst(t) = yes$(ord(t) eq 1);
 tlast(t) = yes$(ord(t) eq card(t));

Parameters
 cs cost of storage tank (k€ per MWh) / 100 /
 c(i) cost of plant (k€ per MW) / pv 3000, windon 1500, windoff 2500 /
 d(t) demand (MWh)
 cf(t,i) relative (normalized to 1) production of plants;

 d(t) = uniform(0,1);
 cf(t,'pv') = min(max(0,power(sin(ord(t)/24*3.14/2),4)+normal(.1,.1)),1);
 cf(t,'windon') = min(max(0,uniform(0,1)),1);
 cf(t,'windoff')= min(max(0,sqrt(sqrt(uniform(0,1)))),1);

Variables
 x(i) size of production facilities (MW)
 s size of accumulator (MWh)
 st(t) evolution of accumulator SOC (MWh)
 tp(t) total production of plants per timestep (MWh)
 z total cost (k€)
 sell(t);

Positive Variables x, s, st, sell;

Equations
 cost total cost equation
 pp(t) calculates tp (total production) from cf and x
 dd(t) assures that demand is always satisfied
 storage(t) new_storage = storage + input - demand
 ss(t) simulates the capacity of the accumulator
 ss0(t) initial storage content
 ssN(t) final storage content;

 cost.. z =e= sum(i, x(i)*c(i)) + cs*s;
 pp(t).. tp(t) =e= sum(i, cf(t,i)*x(i));
 dd(t).. d(t) =l= tp(t) + st(t);
 storage(t).. st(t+1) =e= st(t) + tp(t) - d(t) - sell(t);
 ss(t).. st(t) =l= s;
 ss0(tfirst).. st(tfirst) =g= s/2;
 ssN(tlast).. st(tlast) =g= s/2;

Model fuelstation / all / ;
Solve fuelstation using lp minimizing z ;
Display x.l, s.l;

1.2. Sets

Sets are collections of items. Each item is identified by its string
representation, a string which can be up to 63 characters long and must
start with an alphabetic or numeric character. In unquoted strings, the
only allowed characters are alphabetic and numeric characters, plus (+),
minus (-) and the underscore (_). In quoted strings spaces and special
characters are allowed. Set elements are separated by commas or line
breaks. Example:

set supply sites / Seattle, Chicago, "New York", Washington /;

Numeric items in general have no special meaning or semantics. There is,
however, syntactic sugar to automate creating sets with numeric
elements. The following example creates a set with 168 consecutive
integer elements 1 to 168:

set t timesteps / 1*168 /;

Subsets can be created by naming the superset in parenthesis after the
set name. Elements of the subsets then need to be elements of the
superset. Subsets used for special rules that only apply to a subgroup
of modelled things.

set bigsupply(supply) special sites / Seattle, Washington /;

Elements for sets can not only be explicitly named, but also computed.
This happens usually for subsets of a static superset. The syntax is
subset(superset) = yes$condition. The command includes those items of
the superset in the subset that fulfil the condition. Conditions are
comparison expressions that can include sets, parameters and functions
(described in section 1.6). The following example creates the subset
tlast by only including the last element of t by using the set functions
ord and card that exploit implicit ordering of static sets like t
(called ordered set):

set t timesteps / 1*8760 /;
set tfirst(t) initial timestep;
tlast(t) = yes$(ord(t) eq card(t));

Multi-dimensional sets can be defined like subsets, but with multiple
supersets. Elements are defined by a concatenation of set elements with
the dot (.) character:

set co commodities / Coal, Gas, Oil /;
set pro process names / gt, pp, cc /;
set process_chain(co,pro) / Coal.pp, Coal.cc, Gas.gt, Oil.pp /;

It is possible to assign an alias to any set. This can be useful either
for having a shorter name and is necessary for defining certain types of
equations.

alias(knownset,alias1,alias2,…);
alias(node,i,j);

1.3. Parameters

Parameters are n-dimensional matrices of numerical values, defined over
one or several sets, the so-called onsets. Scalar parameters without
onsets are possible, too. Like with sets, an explanatory text can be
added between parameter name (loss) and data section (/…/):

parameter loss energy losses per km / 0.001 /;

Here is a typical example for a one-dimensional parameter:

set tech / pv, windon, windoff, hydro /;
parameter invcost(tech) investment cost per kW
 / pv 2000, windoff 1500, windon 1100, hydro 900 /;

A more advanced example for a two-dimensional parameter that mixes
explicit values and computed values to create a symmetric distance
matrix among a set of nodes. Unmentioned set element pairs automatically
have the value zero:

set node / a, b, c, d /;
parameter dist(node, node) / a.b 5, b.c 7, c.d 5 /;
alias(node,i,j);
dist(j,i)$(dist(i,j)) = dist(i,j);

There is another format for entering data for dense, high-dimensional
data: the table command. Usually, the nth dimension is used as captions
for columns, while the remaining (n-1) dimensions are used as row
captions. The following example shows a typical three-dimensional
parameter definition:

set site / AT, CH, DE /;
set commodity / Gas, Wind /;
set attribute / invcost, instcap /;
table db_process(site,commodity,attribute)
 invcost instcap
 AT.Gas 800 470
 AT.Wind 1600 2400
 CH.Gas 750 650
 CH.Wind 1900 5500
 DE.Gas 850 35000
 DE.Wind 1400 23000;

The resulting data structure can be visualised as a cube/array with
three dimensions. Each direction corresponds to one of the onsets:

[image: _images/db-process.png]

1.4. Variables

Variables are declared like parameters, except that their value is not
pre-defined. It is the solver’s task to find values for all variables
that minimize or maximize the objective function. Equations can limit
the allowed value range or even force some variables to a fixed value.

variable z total cost;
variable p(tech) output power (kW) per plant;
variable x(tech) building decision per plant;

By default, variables are unconstrained real values. Additional
statements allow restricting the allowed range to positive, binary or
integer values:

positive variable p;
binary variable x;

After a successful optimization run, the following attributes of each
variable are set:

	Attribute

	Explanation

	.l

	Activity level. Value of variable in optimal solution.

	.m

	Marginal. Change in cost function value if x is changed by one unit.

1.5. Equations

Equations are the core of every GAMS model. They describe the
connections between parameters and variables. Sets provide means to
restrict equations to certain groups of elements. It is beyond the scope
of this document to explain their syntax. GAMS provides more than enough
examples and documentation. Section 1.7 lists the most important
documents.

1.6. Auxiliary statements

Apart from the aforementioned elements, there are a number of other
language features that allow for easier data handling, debugging and
result display. The following table summarises frequently used
statements.

	Command

	Explanation

	display

	Displays contents of sets, parameters or variables after successful solve.

	solve

	Solves a problem created by the command model.

	model

	Creates a problem from a set of equations. all uses to all equations.

For example, to display the optimal value of decision variable x after
simulation, the command display x.l; can be used.

1.7. Further reading

A good introductory document with all common language features is the
GAMS Users Guide:

C:\GAMS\win64\xx.y\docs\userguides\GAMSUsersGuide.pdf

A more in-depth language reference is the extended McCarl GAMS User
Guide:

C:\GAMS\win64\xx.y\docs\userguides\mccarl\mccarlgamsuserguide.pdf

A third source of inspiration is the GAMS Model Library that can be
found in the GAMS main menu.

2. GAMS.m

GAMS.m is a utility class for MATLAB that allows creating input data for
GAMS models, reading and writing input and result data from and to GAMS
models and finally executing those models. Advanced functions allow
manipulating data, especially for plotting and reporting functions.

The following table lists the most important functions, grouped by type:

	Group

	Function

	Explanation

	cf.

	Data creation

	GAMS.set

	Create a set

	2.3

	
	GAMS.param

	Create a parameter

	2.4

	GDX read/write

	GAMS.getGDX

	Read 1 set, param, var, eq from GDX file

	2.5

	
	GAMS.putGDX

	Write N sets, params to GDX file

	2.5

	XLS read/write

	GAMS.getXLS

	Read 1 entity or timeseries from XLS table

	2.8, 2.9

	
	GAMS.putXLS

	Write N sets, params to XLS file

	2.10.2

	Data manipulation

	GAMS.rectify

	Make a set/param conform to desired uels

	2.10.1

	
	GAMS.sum

	Sum a param/var over multiple dimensions

	2.10.2

	
	GAMS.merge

	Create union of two sets/params/variables

	2.10.3

	Calling GAMS

	g.run

	Call gams.exe and retrieve solver status

	2.6

2.1. Motivation

The way of providing data to a model directly in its source code makes
it easy to create a new model fast, but makes it difficult to change
parameter values. The easiest way to overcome this limitation is to use
the $include command in a parameter’s data section:

set tech /
$include "data/set_tech.txt"
/
parameter invcost(tech) /
$include "data/param_invcost.txt"
/

The text file param_invcost.txt then could contain the following lines,
where each entry must be a member of the set tech:

pv = 2000
wind = 1500
hydro = 900

While it is easy to automatically create a few of those files for simple
models, this way of data handling becomes hard to maintain for big
models. That is why GAMS also provides functions of retrieving data from
specially prepared Excel files or even through database queries, but all
those solutions lack a proper way to return huge amounts of result data
in a flexible way. The following way scales better and can handle result
data the same way as input data:

Model data can be also provided in the form of the binary GDX (GAMS data
exchange) format. The changes for any given GAMS model are minor. For
each set and parameter declaration a corresponding $load statement must
be included in the GAMS model file, as shown in the following GAMS code
example.

Before: with inline data

set source / a, b, c /;
set sink / x, y, z /;
parameter dist(source, sink)
/ a.x 71, a.y 42, [...], c.z 43 /;

After: with GDX file input

$gdxin input_file.gdx
set source;
set sink;
$load source sink
parameter dist(source, sink);
$load dist

Of course, the question arises how to create those binary data files.
GAMS offers several facilities and tools 1 to work with GDX files.
One user contributed solution is GDXMRW 2 (GDX MATLAB Read and
Write), a collection of binary functions for MATLAB. They give
read/write access to GDX files in form of MATLAB functions (rgdx, wgdx).
GAMS.m is a wrapper class built around these two functions. It not only
allows GDX file reading/writing, but also creating and manipulating
these data structures through utility functions.

2.2. Example (2) – GAMS with MATLAB script

This change is shown exemplarily for the fuel station example from
section 1.1. First the necessary changes in the model file are shown.
While set and parameter declarations remain unchanged, the data sections
are replaced by $load statements. The variable and equation parts are
not shown as they are not affected by the change.

$title Electric fuel station model (fuelstation.gms)

$gdxin input.gdx
Sets t time
 i type of production;
$load t i

Sets tfirst(t) first timestep
 tlast(t) last timestep;

 tfirst(t) = yes$(ord(t) eq 1);
 tlast(t) = yes$(ord(t) eq card(t));

Parameters
 cs cost of storage tank (k€ per MWh)
 c(i) cost of plant (k€ per MW)
 d(t) demand (MWh)
 cf(t,i) relative (normalized to 1) production of plants;
$load cs c cf d=demand

The following MATLAB script interacts with this model file by creating
all input data and writing it to the input data file input.gdx. After
calling the solver (and waiting for the process to terminate), the
solver’s return code is checked for success. In that case, variable x(i)
is read from the result file result.gdx. Highlighted are the data
sections and lines with data transfer between MATLAB and GAMS.

% fuelstation.m
% sets
t = GAMS.set('t', 1:8760);
i = GAMS.set('i', {'pv', 'windon', 'windoff'});

% parameters
cs = GAMS.param('cs',100); % cost of storage (€/MWh)
c = GAMS.param('c',[3000 1500 2500],i.uels); % cost of plant (€/MWh)
demand = GAMS.param('demand',rand(8760,1),t.uels);

% renewable timeseries
values = [...
 min(max(0, sin((1:8760)'/24*3.14/2).^4+0.15*randn(8760,1)), 1), ...
 min(max(0, rand(8760,1)), 1), ...
 min(max(0, rand(8760,1).^0.25), 1)];
onset = { t.uels i.uels };
cf = GAMS.param('cf', values, onset);
clear values onset;

% write to GDX file
GAMS.putGDX('input.gdx',t,i,c,cs,demand,cf);

% run GAMS model
g = GAMS(struct('model','fuelstation.gms'));
g.run; % executes "gams.exe fuelstation.gms –GDX=result.gdx"

% read result variable x if run successful
if g.status == 0
 x = GAMS.getGDX('result.gdx','x');
 x = GAMS.rectify(x, i.uels);

 bar(1000*x.val);
 set(gca,'XTickLabel',x.uels{1});
 ylabel('Installed capacity (kW)');
end

The following paragraphs explain now how each of the GAMS functions used
in this example work, in the order of appearance in this example.

2.3. Input data – Sets

In order to create a GAMS set in MATLAB, all that is needed is a list of
the desired set elements as a cell array of strings:

elements = {'a' 'b' 'c'};
A = GAMS.set('A', elements);

Function GAMS.set takes two arguments. The first is the name of the set
as it is used in the GMS model file. The second is a cell array of the
set elements. The resulting variable A is a structure with the following
fields:

A =
 name: 'A'
 type: 'set'
 val: [1 1 1]
 form: 'full'
 dim: 1
 uels: {{'a' 'b' 'c'}}
 ids: {struct('a',1,'b',2,'c',3)}

	Field

	Explanation

	name

	Name of the set

	type

	‘set’

	val

	Incidence value matrix, 1 indicates a set element, 0 none

	form

	‘full’ or ‘sparse’. Indicates size and interpretation of the value matrix

	dim

	Number of dimensions in value matrix and uels

	uels

	Value labels with one cell array per dimension

	ids

	Lookup table structures with uels as fieldnames

For comfort, also numeric matrices can be given as set elements. They
are then automatically converted to strings, as required for uels by
GAMS:

t = GAMS.set('t',1:3)

Multi-dimensional sets can be declared by providing a cell array of cell
arrays, where each inner cell array corresponds to one element tuple of
the desired set. For domain checking, allowed elements must be given as
a third argument, again as a cell array of cell arrays, one per
dimension:

elements = {{'a' '1'} {'b' '3'} {'c' '2'}};
onsets = [A.uels t.uels];
At = GAMS.set('At', elements, onsets)

As can be seen, specifying huge amounts of data directly in MATLAB code
can be more verbose than in GAMS.

2.4. Input data – Parameters

In order to create a parameter, two things are needed: a matrix/array of
values and a cell array of the same size, indicating the set elements
over which these values are defined, called onset. Only in the simplest
case of a scalar parameter, the onset can be left out:

cpd = GAMS.param('cost_per_dist', 29.95)

Like GAMS.set, the first function argument of GAMS.param specifies the
ame of the parameter that will be visible for GAMS. Here is an example for a
typical, one-dimensional parameter:

sites = {'AT' 'CH' 'DE'};
vals = [8.4 7.6 82.1] * 1e6;
pop = GAMS.param('pop_per_country', vals, {sites})

Here sites is a list of countries and vals is a vector of population
statistics. The curly braces around {sites} in the function call packs
the site list into a single cell array, corresponding to the one
dimension of vals. If this does not make sense to you, compare it to the
following two-dimensional example:

sites = {'AT' 'CH' 'DE'};
coin = {'Coal' 'Hydro' 'Wind'};
vals = [1.3 6.6 3.0 ; ... AT
 0.0 11.0 0.5 ; ... CH
 30.0 0.9 70.0 ... DE
];
ppc = GAMS.param('pp_capacity', vals, {sites coin})

The value matrix now contains power plant capacities per country and
input commodity. Dimension one (rows) corresponds to countries,
dimension two (columns) to input commodities. The onset cell array
{sites coin} now has length two, matching the two dimensions of vals.

For more than two dimensions, the following structure of providing
values and onsets has proven least complicated: the value matrix stays
two-dimensional. Each row corresponds to a tuple of (n-1) dimensions;
the nth dimension is addressed by the columns of the value matrix. The
following example demonstrates this usage:

pros = {{'Hydro' 'Elec'} {'Gas' 'Heat'} {'Uranium' 'Elec'}};
atts = {'efficiency' 'inv-cost' 'life-time'};
vals = [0.40 900 100 ; ... Hydro.Elec
 0.80 650 30 ; ... Gas.Heat
 0.35 1800 25 ... Uranium.Elec
];
db_pro = GAMS.param('db_pro',vals,{pros atts})

Function GAMS.param returns a MATLAB struct with the following fields:

	Field

	Explanation

	name

	Name of the parameter

	type

	‘parameter’

	val

	Value matrix as numerical array

	form

	‘full’ or ‘sparse’. Indicates size and interpretation of the value matrix

	dim

	Number of dimensions in value matrix and uels

	uels

	Value labels with one cell array per dimension

	ids

	Lookup table structures with uels as fieldnames

The numerical array val can be visualised like an n-dimensional array of
values, here shown for the previous example:

[image: _images/db-pro-val.png]
In order to identify and address the values in the value array val, the
interpretation for a given position (uels) and position for a given
meaning (ids) are added to the data structure. In the previous code
example, they would look like this:

db_pro.uels = { ...
 {'Gas' 'Hydro' 'Uranium'} ...
 {'Elec' 'Heat'} ...
 {'efficiency' 'inv-cost' 'life-time'} };

For each dimension, the position in the value matrix field val
corresponds to a combination of labels in uels. This can be used for
example in a plot of process efficiencies:

bar(db_pro.val(:,:,1));
set(gca,'XTickLabel',db_pro.uels{1});
legend(db_pro.uels{2});

Note the hardcoded number 1 in the first line, denoting the position of
the field efficiency in the value matrix. However, this number might
change any time when new attributes are added to the list of attributes
atts. This is where ids are handy. They provide lookup tables in form of
MATLAB structs that map labels to their position in the value table. In
the example above, ids would look like this:

db_pro.ids = { ...
 struct('Gas',1,'Hydro',2, 'Uranium',3) ...
 struct('Elec',1,'Heat',2) ...
 struct('efficiency',1,'inv_cost',2,'life_time',3) };

Note that dashes (-) in uels are replaced by underscores (_) in ids
because MATLAB does not allow them as structure fieldnames. With using
ids, the bar plot from above could be written as follows:

bar(db_pro.val(:,:,db_pro.ids{3}.efficiency));

If using more than one id of a structure, it has proven efficient to
temporarily store them in a variable with a short name, like here:

pids = db_pro.ids;
bar(db_pro.val(:,:,pids{3}.efficiency));

2.5. GDX data exchange

2.5.1. Writing GDX files

The previous sections have shown how to create sets and parameters for
GAMS models. Now it is explained how these data structures can be
written to and read from GDX files. The next code block creates some
sets and one parameter that shall be written to an input file:

timeSpan = 4000:6000;
t = GAMS.set('t', timeSpan);
tm = GAMS.set('tm', timeSpan(2:end));
dem = GAMS.param('demand', rand(size(tm.val)), tm.uels);

The resulting sets and parameter now can be written to a GDX file using
function putGDX:

GAMS.putGDX('input.gdx',t,tm,dem)

The first argument to this function is the filename to a GDX file. If it
exists, its contents are overwritten. So it is not possible to add
elements to a GDX file with successive calls. After the file name, the
function takes an arbitrary number of arguments that must be either sets
or parameters.

2.5.2. Reading GDX files

After a successful simulation run it is usually necessary to find out
something about the variable values and equation levels. This is done by
reading variable values from a result GDX file the following way:

eprout = GAMS.getGDX('result.gdx','EprOut')

The first argument gives the GDX filename to be read from and argument
two is the name of the symbol to be read. It can be a set, parameter,
variable or equation. An optional third argument specifies whether a
full or sparse value matrix should be returned:

fin = GAMS.getGDX('result.gdx','fin','sparse')

Variables and equations do not only have a value, but also a marginal
value. It can be read from the GDX file using the optional fourth
argument that specifies the field to be read:

some_constraint = GAMS.getGDX('result.gdx', 'some_constraint', '', 'm')

Variables are identical in structure to parameters. They even can be
used as such, if their type is changed to parameter manually:

eprout = GAMS.getGDX('result.gdx','EprOut')
eprout.type = 'parameter'
GAMS.putGDX('input.gdx',eprout)

2.6. Calling GAMS

In order to call GAMS from MATLAB, a GAMS object has to be created. This
can be done using the following MATLAB command:

g = GAMS

This initialises variable g with a property g.path to default values,
which are shown in the following table.

	Field name

	Default value

	Comment

	gams

	gams.exe

	GAMS executable

	model

	model.gms

	GAMS model file

	result

	result.gdx

	GAMS result file

If your GAMS executable is not in the system path 3, you can provide
the absolute path directly:

g = GAMS(struct('gams','C:/GAMS/gams.exe'))

The following example shows how to specify a different model filename
and result file:

g = GAMS(struct('model','fuelstation.gms','result','out.gdx'))

Once the object is set up, GAMS can be run by simply typing:

g.run

This launches the system command “gams.exe model.gms -GDX=result.gdx”,
while all paths are replaced according to the fields in g.path. The
option -GDX=result.gdx saves all model data (including input data) to
the specified GDX filename. For later backup of a simulation run it is
sufficient to save this file alone.

The return code of the system command is retrieved and stored in the
object property g.status. A value of zero (as in “zero errors”)
indicates a successful run; a non-zero value corresponds to any kind of
error. In that case, the run log file model.lst provides error messages
marked by four stars **** that can be used to debug.

The advantages of such the GAMS object will become clearer when
inheriting from the GAMS class to create a model-specific interface
class. It then can automate the steps that are done in the MATLAB script
of the fuel station example from section 3.2. This is demonstrated in
the following section.

2.7. Example (3) – Interface class replaces script

The example from section 3.2 is already an improvement compared to the
pure GAMS code from section 1, but repetitive actions like writing input
data, calling GAMS and reading results could be further automated. This
is best done by creating a class. It creates an object that holds the
status (input and output data) of the model. The following code block is
to be put in a file called FS.m anywhere in the MATLAB path:

classdef FS < GAMS
 properties
 % input data
 set_t % timesteps
 set_i % technologies
 db_cs % cost of storage (€/MWh)
 db_c % cost of plant (€/MWh)
 ts_demand % demand timeseries (1)
 ts_cf % renewable input timeseries (1)

 % result data
 Z % total cost (k€)
 X % plant sizes per technology (MW)
 S % storage size (MWh)
 end

 methods
 function obj = FS()
 % Call GAMS constructor
 obj = obj@GAMS((struct('model','fuelstation.gms')));

 % Set values for input data
 obj.set_t = GAMS.set('t', 1:8760);
 obj.set_i = GAMS.set('i', {'pv', 'windon', 'windoff'});

 obj.db_cs = GAMS.param('cs',100);
 obj.db_c = GAMS.param('c',[3000 1500 2500],obj.set_i.uels);
 obj.ts_demand = GAMS.param('demand',rand(8760,1),obj.set_t.uels);

 values = [...
 min(max(0, sin((1:8760)'/24*3.14/2).^4+0.15*randn(8760,1)), 1), ...
 min(max(0, rand(8760,1)), 1), ...
 min(max(0, rand(8760,1).^0.25), 1)];
 onset = [obj.set_t.uels obj.set_i.uels];
 obj.ts_cf = GAMS.param('cf', values, onset);
 end

 function writeInputs(obj)
 GAMS.putGDX('input.gdx', obj.set_t, obj.set_i, ...
 obj.db_cs, obj.db_c, obj.ts_demand, obj.ts_cf);
 end

 function readResults(obj)
 obj.Z = GAMS.getGDX(obj.path.result, 'z');
 obj.X = GAMS.getGDX(obj.path.result, 'x');
 obj.S = GAMS.getGDX(obj.path.result, 's');

 obj.X = GAMS.rectify(obj.X, obj.set_i.uels);
 end

 function plot(obj)
 bar(1000*obj.X.val);
 set(gca,'XTickLabel',obj.X.uels{1});
 ylabel('Installed capacity (kW)');
 grid on;
 end
 end
end

This file contains the class FS (short for fuel station). It has several
properties that contain the input and output data of the original fuel
station model. In the section methods, three functions are defined. The
first, FS, is the constructor. It sets all values of input data
properties. The function writeInputs handles writing input data to a GDX
file. Function readResults handles output data reading and already shows
an advanced feature (rectify, described in section 0) for normalising
GAMS data structures.

While this change increases the amount of code and complexity for a
small model, the scalability for bigger models is much better. Hundreds
of little actions can be automatically performed before, during and
after the simulation just by modifying the appropriate functions in a
single class file, while scripts remain short code snippets with
high-level statements that can be used for scenario generation and
custom analysis. This is how the new script fuelstation.m looks like
when using the interface class FS:

% fuelstation.m using interface class FS
f = FS;
f.writeInputs;
f.run;

% read result and plot variable x if run successful
if f.status == 0
 f.readResults;
 f.plot;
end

Note that function run and property status are not defined in FS.m,
but inherited from GAMS.m.

The next logical step in continuing to develop FS.m could be to
establish a mechanism to read the initial input data form somewhere
else, e.g. a database, an Excel file (see the next two sections for
that), a webpage URL… Anything that can be done using MATLAB code can
now be part of the model data preparation.

2.8. Input data – Entities

The problem with independent definitions of sets and parameters is that
one has to manually keep track that parameter values and set elements
match. Wouldn’t it be nicer to only type in sets and parameter value
only once? This is what the entity data format is for. It offers the
possibility to enter data in the following format to quickly generate
several sets and parameters in one place:

	Site

	Coin

	Coout

	eff

	inv-cost

	inst-cap

	cap-up

	AT

	Hydro

	Elec

	1.00

	1000

	10’000

	50’000

	AT

	Coal

	Elec

	0.35

	2000

	20’000

	Inf

	CH

	Uranium

	Elec

	0.30

	…

	…

	…

	CH

	Coal

	Elec

	…

	
	
	

	DE

	Wind

	Elec

	
	
	
	

	DE

	Solar

	Elec

	
	
	
	

If this table were in a spreadsheet called Process in the file
input.xls, the following MATLAB line would create five GAMS sets and one
parameter:

[set_pro att_pro db_pro onsets] = GAMS.getXLS('input.xls','Process');

The set set_pro then contains all process chains like AT.Hydro.Elec as
three-dimensional tuples; the set att_pro contains the attribute
caption titles eff, inv-cost and inst-cap; and the parameter db_pro is
a parameter defined over (set_pro, att_pro) and contains the whole
value matrix. The return value onsets finally is a cell array of three
sets for each dimension of set_pro, i.e. Site, Coin and Coout.

The resulting data structures then can be, modified (e.g renamed) and
written to GDX input files as required. This feature is extensively used
in the URBS.m constructor function.

If only one (unnamed) value column is desired, the special column title
value can be used. In that case, the resulting parameter (in the
example: db_pro) does not gain an additional dimension from single the
value column and the attribute column set (example: att_pro) will be
empty.

	Rules for entity tables

	Sets names must start with an uppercase letter.

	Attribute names must start with a lowercase letter. Special attribute name ‘value’.

	Set elements must adhere to the set element naming rules from section 1.2.

	Value matrix elements must be numeric or Inf.

	Data after the first empty row and column is ignored.

2.9. Input data – Timeseries

While the entity format is useful for high-dimensional data cubes, it
lacks the possibility to enter long series of homogenous data. This is
what the timeseries data format is for. It allows creating parameter
over a long, single dimension called ‘t’.

	t

	AT.Wind

	CH.Wind

	DE.Wind

	AT.Hydro

	CH.Hydro

	DE.Hydro

	AT.Solar

	1

	1.00

	0.10

	0.00

	0.20

	0.33

	0.50

	…

	2

	0.35

	0.25

	0.00

	0.20

	0.33

	0.51

	…

	3

	0.30

	0.33

	0.05

	0.21

	0.33

	0.52

	…

	…

	…

	…

	…

	…

	…

	…

	…

If this table were called ‘SupIm’ and placed in an Excel file ‘ts.xls’,
the following MATLAB command would create four GAMS sets and one
parameter:

[ts t cols onsets] = GAMS.getXLS('ts.xls', 'SupIm', 'timeseries');

Note that entities and timeseries are read by the same function
GAMS.getXLS. Timeseries need the third optional argument set to the
value ‘timeseries’. The set t contains the first column as a set with
correct uels (they don’t need to be consecutive integers). Set cols is a
one- or multi-dimensional set of the column titles. Multi-dimensional
titles are split at the dot (.) into separate dimensions. Parameter ts
then contains the contents of the value matrix, defined over the tuple
(t, cols). Like for entities, onsets contains the individual
one-dimensional onsets of cols in a cell array of GAMS sets.

	Rules for timeseries tables

	The first column should be labelled “t”.

	Column caption tuples must obey set element naming rules stated in section 1.2.

	All column captions must have the same number of dimensions, separated by dots.

	Value matrix entries must be numeric and finite.

	Data after the first empty row and column is ignored.

2.10. Data manipulation

GAMS data structures often need to be transformed, either for plotting,
reporting or for scenario generation. There are three functions that
allow for normalising

2.10.1. Normalising

The function GAMS.rectify was developed to overcome a limitation of the
GDX file format: uels that correspond only to zero values are left out.
This especially made it difficult to plot timeseries of energy storage
input/output that occurs only from time to time. The following example
shows the problem:

tm = GAMS.set('tm', 1:24);
dem = GAMS.param('demand', rand(size(tm.val)), tm.uels);
estin = GAMS.param('estin', [4 2 1], {{'2' '12' '24'}});

While tm and dem are defined over 24 timesteps, estin only has three
non-zero values in timesteps 2, 12 and 24. A simultaneous plot of
dem.val and estin.val would therefore fail badly. The following call
fixes the situation:

estin = GAMS.rectify(estin,tm.uels)

Now estin is also defined over all 24 timesteps. Missing values are
filled up with zeros.

But this function can do much more than to fill in zeros in value
matrices. The original uels and the target uels are matched dimension by
dimension. In each dimension, matching uels are sorted according to the
target uels, missing uels are inserted and undesired uels are removed.
The value matrix is sorted, grown and shrunk accordingly.

In the following artificial example, two sets specify the target uels of
a parameter that is badly sorted, has missing and undesired uels:

sites = GAMS.set('sites', {'AT' 'CH' 'DE' 'FR'})
atts = GAMS.set('attributes', {'pop' 'gdp'})
db_site = GAMS.param('db_site', [3.4 82; 0.5 8], {{'DE' 'ES'} {'gdp' 'pop'}})

In order to add the missing sites and sort the attributes, the following
line is sufficient:

db_site = GAMS.rectify(db_site,[sites.uels atts.uels])

Inspection of db_site.val shows that zeros have been added for all
previously non-existent values, while existing values are preserved and
moved to the correct location. The values for site ES, however, are
erased because they are not in the set of desired site uels.

2.10.2. Summing

Huge, multi-dimensional variables and parameters can hardly be
interpreted by viewing their raw data. Function GAMS.sum adds values
over one or more dimensions and returning a new data structures with
reduced dimensionality and fitting uels. In the following example,
variable eprout is a five-dimensional variable defined over time, site,
process name, input commodity and output commodity. In order to get a
two-dimensional variable of electricity production by input commodity
and site, the following two lines are sufficient:

% input: eprout(t, site, pro, coin, coout)
% only keep values with output commodity electricity
eprout_elec = GAMS.rectify(eprout, {eprout.uels{1:4} {'Elec'}})
% sum over dimensions (t, pro, coout)
eprout_sum = GAMS.sum(eprout, [1 3 5])
% result: eprout_sum(site, coin)

One remark: The results of GAMS.sum are perfectly suited to be written
to an XLS table using GAMS.putXLS:

eprout_sum.name = 'Electricity by Commodity';
GAMS.putXLS('report.xlsx', eprout_sum)
% bar chart in Excel

[image: _images/barchart.png]
Generally, putXLS takes an arbitrary number of arguments (sets,
parameters, variables, equations) and writes their contents to separate
tables in a spreadsheet.

2.10.3. Merging

Merging is needed when two data structures slightly overlap and the
union of both values is desired. This feature was first needed when
gluing timeseries together for URBS rolling horizon runs. The following
example illustrates the situation. dem1 and dem2 are two timeseries,
defined over the sets t1 and t2 that have an overlap from timesteps 25
to 36. GAMS.merge takes both timeseries and creates one that goes from
timestep 1 to 60. During the overlapping timesteps, dem2 overwrites
values from dem1:

% data preparation
t1 = GAMS.set('t1', 1:36);
t2 = GAMS.set('t2', 25:60));
dem1 = GAMS.param('demand', rand(size(t1.val)), t1.uels);
dem2 = GAMS.param('demand', rand(size(t2.val)), t2.uels);
% merge both parameters
dem = GAMS.merge(dem1, dem2)

If you have variables from multiple runs, e.g. timeseries with partly
overlapping timesteps, one could append the newest values to the end by using
merge in a loop:

% initalise empty array
eprout = [];
for k=1:Nruns
 % read result of run number k
 tmp = GAMS.getGDX(['result' num2str(k) '.gdx'], 'EprOut');

 % append new time series
 eprout = GAMS.merge(eprout, tmp);
end

2.11. Further reading

For a short description of each function, its arguments and return
values, just type the following command in the MATLAB Command Window:

help GAMS.functionName

Footnotes

	1

	http://interfaces.gams.com/doku.php?id=gdx:gdxtools

	2

	http://www.gams.com/dd/docs/tools/gdxmrw.pdf

	3

	This can be changed in Microsoft Windows advanced system settings
under “environment variables”.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 GAMS and how to use it from MATLAB

 		
 GAMS introduction

 		
 Example (1) – Fuel station

 		
 Sets

 		
 Parameters

 		
 Variables

 		
 Equations

 		
 Auxiliary statements

 		
 Further reading

 		
 GAMS.m

 		
 Motivation

 		
 Example (2) – GAMS with MATLAB script

 		
 Input data – Sets

 		
 Input data – Parameters

 		
 GDX data exchange

 		
 Writing GDX files

 		
 Reading GDX files

 		
 Calling GAMS

 		
 Example (3) – Interface class replaces script

 		
 Input data – Entities

 		
 Input data – Timeseries

 		
 Data manipulation

 		
 Normalising

 		
 Summing

 		
 Merging

 		
 Further reading

_static/down-pressed.png

_images/barchart.png
mWind-off
2 = Wind-on
10 = Sunglobal
W Others
8 mHydro
6 mGeothermal
mBio
4 " Gas
=Uranium
2
mLignite
0

=Coal

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/db-pro-val.png
Gas T
Hydro +

Dim| 2

Uranium +

Vv
Dim 1

_images/db-process.png
commodity

site

_static/comment-bright.png

